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ABSTRACT

Biased regression estimators are increasingly being utilized
as alternatives to least squares parameter estimators in multiple

linear regression when the predictor variables are multicollinear.
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One popular biased estimator is the ridge regression estimator.

Ridge estimators are known to have smaller mean squared errors

*
'">x than least squares for suitably small nonstochastic choices of the
(a1
i (- ridge parameter. To date, however, most of the practical applica-
tions of ridge regression employ stochastic techniques to select
; —— the ridge parameter. 1In this paper we examine three nonstochastic
: procedures for choosing ridge parameters and compare their perform-
b -
= ance with a stochastic method proposed by Hoerl, Kennard, and

Baldwin (1975).
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1. INTRODUCTION

Hoerl and Kennard (1970a, b) introduced ridge regression
estimation as an alternative to least squares estimation of the
parameters of a multiple linear regression model when the predictor

variables are multicollinear. Write the regression model as

_\:-soi+x_8_+£ (1.1)

where Y is an n X 1 vector of response variables, 1 is an n x 1

vector of ones, X = [X), X,/ .../ l(p] is an n x p full column rank

matrix of nonstochastic predictor variables that are standardized
so thatggf_l_- 0 and 53}_(1 = F (J %X, 29 eowi B Bo and B are un-
known constants, and € is an n X 1 vector of random error terms
with € i v NID(O, 02) . The least squares and (simple) ridge esti-
mators of B are, respectively,

B = x°x) "t Xy and B = (XX + kI)'lx‘_g (1.2)

where k > 0.

- Theoretical properties, including optimality considerations,

of ridge estimators have been derived under the assumption that the

T

79 02 1

P
-
—




| SECUN 1 LLASSIFICATION OF TNIS PAGE (When Data Enleved)
: . R ST
: EPORT DOCUMENTATION PAGE BEFORE COMBLETING FORM
. y BER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
‘ TR- 7 g -& 2517
4 TITLE (and s.,b,,u.) AN fi 97\\95 OF REPORT & PERIOD COVERED
Py s : NRA= e /
/ (, ONSTOCHASTIC TECHNIQUES FOR SELECTING RIDGE n - /
( * Interim y </
ARAMETER VALUES -

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
7‘ ke . : -"(.: --------

,(\ Rxchardbff/cunst and.Tsushung A /Hua ‘ PAS ’/FOSR-75 2871}//

N Ty St

S PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK }
Southern Methodist University ( 2¢) L L
Department of Statistics 61102?«/12394#A5,ff? g
Dallas, Texas 75275 Qj_é//'»-

1. CONTROLLING OFFICE NAME AND eDDREsS \.—R’-E"P"OU“T DAT'E‘““
Air Force Office of Scientific Research/NM 71/ [Januama978 |
Bolling AFB, Washington, DC 20332 »

3 ¢ A~ ? .
23 iyt poly
T4, MONITORING AGENCY NAME & ADDRESS(/{ dilferent from Controlling Olflice) | 15. SECURITY CLASS. (of this report)

. UNCLASSIFIED

15a. DECL ASSI FlCAT!ON/DOVINGRADING
SCHEDUL

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) |

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)
Ridge Regression
Biased Estimation
Multicollinearity
Least Squares

- 20 AB)&ACT (Continue on reverse side If necessary and identily by block number)

Biased regression estimators are increasignly being utilized as alterna-
tives to least squares paramter estimators in multiple linear regression
when the predictor variables are multicollinear. One popular biased
estimator is the ridge regression estimator. Ridge estimators are known
to have smaller mean squared errors than least squares for suitably small
nonstochastic choices of the ridge parameter. To date, however, most of

the practical applications of ridge regression employ stochastic technique !

to select the riggc parameter. _In this paper we examipne three non= 2 I i

. DD ,73%%; 1473 : - UNCLASSTFIED Brst pamse 7T/ i
L/ //// l / / SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




TR

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract continuqd.

L/
'stochastic procedures for choosing ridge parameters and compare their perfor-
mance withka stochastic method, proposed by Hoerl, Kennard, and Baldwin (1975).

oot hoy

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




TP ST

R

selection of the ridge parameter, k, is nonstochastic. Specifical-
ly, if the (total) mean squared error of a regression estimator B

is defined to be
mse(3) =E[(B - B (B - B, ' (1.3)

Hoerl and Kennard (1970a) proved that a nonstochastic choice of k

that is suitably small would insure that
mse(8,) < mse () - (1.4)

If the latent roots of X°X are denoted % ) 5_...5_2p and the

1 £ %3
corresponding latent vectors are !1, V2

eeey V_, a sufficient
—-p

condition for (1.4) to hold is that

0 <k < ozN: g (1.5)

where ¢; = max{Oii 4 =1, 2, «vop p} and ¢j = !&E.

Two problems arise with the practical implementation of ridge
regression using (1.5). First, the above properties have only been
derived for nonstochastic selection rules for k. Second, the bound
in (1.5) is a function of the unknown model parameters. Most of
the applications of ridge regression methodology, however, employ
stochastic estimators of k (e.g. Hoerl and Kennard 1970b; McDonald
and Schwing 1973; and Hocking, Speed, and Lynn 1976). To date,

little attention has been given to nonstochastic selection rules.




2. THREE NONSTOCHASTIC SELECTION RULES

One of the motivations for adopting ridge regression over
least squares is that the resulting estimates behave more like they
are generated by an orthogonal X matrix than a multicollinear one.
The rules proposed in this section were investigated because they
enable (X°X + kI) to exhibit properties more closely associated

with the identity matrix than does X°X.

If X is an orthogonal matrix (standardized as in Section 1),

the following three properties are true of X“X:

) |¥x| =2 ,

i = I and, therefore, the variance infla-

tion factors (diagonal elements of (x‘x)'l.

(1i)  (x°%°

Marquardt (1970)) are all equal to 1 ; and
(iii) the latent roots of X“X are all equal to 1 (i.e.,

b =1 for all j).

These characteristics all follow from the realization that X“X = I
if the columns of X are mutually orthogonal. On the other hand,
if X contains highly multicollinear columns (e.g. Mason, Gunst,
and Webster 1975),
(1) |x°x| 20 ;
(ii) the variance inflation factors are much larger
than 1; and
(iii) one or more of the latent roots of X“X are close

to 0.




- - e o r ; e
l x : -
‘ :

In order to compeﬁsate for the deleterious effects of multi-
collinearities on these properties of X“X, we propose to examine
the following three rules for selecting k. The resulting ridge
regression estimators, all of which are found using éﬂ in (1.2),

are identified as RR(2), RR(3), and RR(4):

RR(2): Choose k so that |X°X + kI| = 1.
RR(3): Choose k so that the largest variance inflation factor
equals 4.
RR(4): Choose k so that the "multicollinearity allowance"
(Vinod 1976)
P
mep- 3 L0 em™t (2.1)
aea ¥ 13
equals the number of multicollinearities existing

among the predictor variables.

The multicollinearity allowance, m in (2.1), can be inter-
preted (Vinod 1976) as "the assigned deficiency in the rank of

X°X." 1In our investigations if X is an orthogonal matrix, or

nearly so, a rank deficiency of zero is assigned to X“X. Solving
(2.1) for k when m = 0 yields k = 0; i.e., the ridge estimator in
(1.2) reduces to the least squares estimator. On the other hand,
if r multicollinearities are identified in X, m is set equal to r

and (2.1) is solved iteratively for k.

e b A
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3. MEAN SQUARED ERROR COMPARISONS

Comparison of stochastic estimators of the ridge parameter
have been conducted by simulation due to the complexity of the
theoretical distribution of ER when k in (1.2) is random. Hoerl,

Kennard, and Baldwin (1975) estimated k with

-~

k = po/B°B , (3.1)

~ ~

where B and 02 are least squares estimators of the respective
parameters. They concluded that éR using the random estimator of
k offered great potential for reducing the mean squared error of
éR over that of é, Following up on this study, Hoerl and Kennard
(1976) iterated with (1.2) and (3.1) using ﬁ to obtain éR' then
inserting éR in (3.1) to obtain a new ﬂ, and repeated the process
until the estimates i (and éﬁ) converged. Their simulation showed
that the iterated ridge estimator offered further improvement in
mean squared error over least squares and the noniterated ridge

estimator. In both of these studies the magnitude of the reduction

in mean squared errors of the ridge estimators over least squares

was linked to the magnitude of the signal-to-noise ratio, p -2‘8/02:

the larger the value of p, the less the reduction in mean squared
error of the ridge estimators over least squares. Also, the more
multicollinear the data set, the greater the reduction in the mean

squared error of the ridge estimators.




Dempster, Schatzoff, and Wermuth (1977) performed an extensive
simulation involving 57 different estimators (including least
squares and several ridge estimators) and 160 model configurations.
Although no replication of the model configurations was reported,
the ridge estimators generally were superior to least squares and
at least competitive with the other biased estimators examined; in
fact, one ridge estimator (RIDGM) was considered the best overall
when comparisons were made with mean squared error, (l1.3), as the

criterion.

Gunst and Mason (1977) compared five regression estimators,
including least squares and a ridge estimator using k in (3.1).

Their simulation involved 24 model configurations, each of which

was replicated 100 times. Overall, their conclusions parallel the

above ones with two reservations:

(i) there are specific model configurations for which J
the ridge estimator is empirically inferior to
least squares, and

(ii) the ridge estimator was not judged the best overall

althouwgh it was generally superior to least squares.

One of the reasons pointed out for the latter conclusion was the

high degree of variability associated with the estimator of k =--

F T T

another motivation for studying nonstochastic selection rules for

k.




We now wish to examine the mean squared errors of ridge re-
gression estimators using choices of k based on the rules RR(2),
RR(3), and RR(4). For comparison purposes, we calculate mse(éR)
using (1.3) for the twelve model configurations for the multicol-
linear X matrix in Gunst and Mason (1977). This 30 % 10 matrix
contains a single strong multicollinearity among the first four
columns of predictor variables. The latent roots of X“X for the

data are -
= 2 = =
El 0.00362 22 0.37145 13 0.49723 E4=(L63691 QS

9,6=1.08692 ﬂ.7=l.22693 28=1.42364 29=1.55308 L

=0.72105

10° 2.47918.

The magnitude of the first latent root of X“X compared with the
remaining ones indicates that a single strong multicollinearity
exists in X. The large elements of v,

are involved in the multicollinearity:

identify which variables

\_ri = (0.658, -0.487, -0.451, -0.353, -0.006,

0.001, -0.003, 0.019, -0.022, -0.022).

This latent vector reveals that the first four predictor variables
are involved in the multicollinearity. The variance inflation fac-

tors (VIF) corroborate the conclusion:

Variable: Xl X2 X3 X4 x5 X6 X7 XB Xg xlo

VIP: 130.1 ¢66.4 57.1 35.9 1.2 1.2 1.3 1.6 1.2 1.6




i, 1 Sl v

The twelve model configurations incorporating this X matrix
are identified by all combinations of four signal—to;noise ratios,
e §f§/02, and three orientations of g with Yi’ ¢1 = gig, The
four signal-to-noise ratios studied are p = 0.04, 1.0, 100, and
10,000. The three orientations are determined by letting B equal
Vio (4, =0.0), 0.5{y, +V, + Vg +V, o} (¢, =0.5), and v, (¢, =
1.0). These choices of B enable the coefficient vector to be

orthogonal, neither orthogonal nor parallel, and parallel to the

vector defining the multicollinearity, respectively.

To eliminate scale differences in the comparisons, we tabu-
- 2 :
late the scaled mean squared errors, mse(f)/0 . For the ridge
estimators with nonstochastic k the scaled mean squared errors can

be written

P P
me(B)/0 = J aa, +0 24k’ o052 (3.2
juy #4 j=1 j

where ¢? = (VTB)2 (note that both V. and B are unit length vectors
J 5 = =

for these model configurations). Least squares scaled mean squared

errors are given by

P
mse(_B_)/oz = ) Vil (3.3

g1 ¢

-
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4. DISCUSSION OF RESULTS

Table 1 displays the theoretical mean squared errors for least
squares and the optimal mean squared errors for ridge regression
for the model configurations discussed in the previous section.

The theoretical value for least squares for all model configura-
tions is given by (3.3); i.e., for the latent roots listed in the

previous section

10

7 o7t = 287.63 .
J=l

The optimal mean squared error for the ridge estimators is obtained

from the "generalized" ridge estimator

1

- (XX +K) XX, (4.1)

8y

where K = diag(kl, k Wy kp), of which the simple ridge estima-

2'
tor is a special case with kl = k2 e kp = k. Using the

generalized ridge estimator, the mean squared error (1.3) becomes

P

= 2 A
= 2 ,
mse (B,) jzl {o j(lj + kJ)

2 L .2 -2.2
k, (2, . o F 5 4.2
+ J( 5 * kj) ¢J} (4.2)

which is minimized when kj = 02/¢§. Inserting the optimal k. into

3

(4.2) produces the scaled mean squared errors for the generalized

ridge estimator that are exhibited in Table 1.

[Insert Table 1]




Simple ridge estimator§ cannot hope to achieve the cptimal
mean squared errors shown in Table 1. Nevertheless, these optimal
values provide a gauge of the maximum reduction in mean squared
error that is possible using ridge regression estimators. Note in
particular that if p or ¢1 is small enormous reductions are possi-
ble. If both p and ¢l are moderate or large, only small reductions
in mean squared error can be obtained; on the contrary, in these
situations simple ridge estimators can perform much worse than

least squares.

Mean squared errors for the ridge estimators RR(2), RR(3),
and RR(4) were obtained by iterating on k until each of the criter-
ia were satisfied to four decimal place accuracy in k. Solutions

for k are
RR(2): k = .2100 RR(3): k = .0172 RR(4): k = .0165 .

The theoretical mean squared errors for least squares and the ridge
estimators for the twelve model configurations discussed earlier
are displayed in Table 2 along with the estimated mean squared
errors for ridge regression using (3.1) to estimate k that were
obtained in the simulation of Gunst and Mason (1977). The latter
ridge estimator is labelled RR(1l) in Table 2 and is included for

comparison purposes.

[Insert Table 2]
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Overall the nonstochastic ridge estimators, especially RR(2),
offer as large or substantially larger reductions in mean squared
error over least squares as does the stochastic version, RR(1).
The notable exceptions to this statement occur for p = 10,000 and
¢1 = 0.5 or 1.0. Between 6- and 35-fold increases in mean squared
error over least squares are observed for the nonstochastic ridge
estimators with these two model configurations. The stochastic
ridge estimator is comparable in mean squared error to least
squares when p = 10,000 and ¢1 = 0.5 and over three times larger

when p = 10,000 and ¢1 = 1.0,

Conclusions to be drawn from this information include the

following:

(i) except for extremely large signal-to-noise ratios,

nonstochastic ridge estimators RR(2), RR(3), and
RR(4) offer at least as great a reduction in mean
squared error over least squares as does the
stochastic ridge estimator, RR(1);

(ii) RR(2) is overall as good as any of the biased
estimators examined in Gunst and Mason (1977);

(iii) when signal-to-noise ratios are large, nonsto-
chastic ridge estimators can still reduce the
mean squared error over least squares if the
coefficient vector is orthogonal to latent vectors

of XX that identify multicollinearities; and
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(iv) if B is not orthogonal to latent vectors of X'X
that identify multicollinearities and if the
signal-to-noise ratio is large, mse(ga) can be

orders of magnitude larger than mse(g).
5. RIDGE PRELIMINARY TEST ESTIMATORS

Since the only situations in which the nonstochastic ridge
estimators were clearly inferior to least squares in Table 2 occur-
red when p was large and ¢1 # 0, one might consider the following
estimation procedure. For X matrices with a single strong multi-
collinearity (the procedure is readily generalizable to two or

more multicollinearities), test the hypothesis

Ho: Yaﬁ =0 vs Ha: Yié-# (o}

with the statistic

. el
F=2,(V] B °/MsE , (5.1)

the usual normal-theory test statistic for Ho. Let Fa denote the
appropriate upper-tail logal point of an F distribution with 1 and

n-p-1 degrees of freedom. Then let

if B «< Fo o
(5.2)

>
Jo > Au))

F%
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where §R is a nonstochastic ridge estimator (RR(2), RR(3), or
RR(4)). The estimator (5.2) is referred to as a preliminary test

estimator since its form depends on the outcome of the test of Ho
Following Bock, Yancey, and Judge (1973), the preliminary

test estimator (5.2) can be written as

(F)-_B_R + I[F

Qa,

J(B) 8, (5.3)

Bpr = Yo, 2)
a

where Iia b)(u) =1 if a < u < b and equals zero otherwise. A

straightforward but tedious derivation reveals that

P
£ g oy md 4 ol
mse (B ) /0" = jzlnj + kL) TRy +k) TPy () {k () +k) T - 2}
P
+xp, 0 a0 kg ™t - 2)
N e 3

2 -1 -1
+ pk¢>l(£1+k) {2p3m = 2pg (1) +k(£1+k) ps(x)}

1%
+ ok 0 T (4022, (5.4)
1 . 3 3
Jm=e
where pr(k) = Pr{F(r, n-p-1, \) < c/r} and F(r, n-p-1, 1) is a

noncentral F random variable with r and n-p-1 degrees of freedom

and noncentrality parameter ) = 21(gig)2/202.

The effect of the preliminary test on the mean squared errors

of the nonstochastic ridge estimators can be seen in Table 3. To

varying degrees both preliminary test procedures (using a = 0.05
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and 0.0l1) protect against catastrophic increases in mean squared
error over least squares for p = 10,000 and ol = 0,5 or 1.0,
particularly for the latter orientation. Balancing the decrease
in mean squared error for these two configurations from those ‘re-
ported in Table 2 is a moderate increase in mean squared error for
most of the other configurations. It is interesting to observe,
however, that all the nonstochastic ridge estimators using the pre-
liminary test procedure with a = 0.0l are competitive with RR(1l)

except for the configuration with p = 10,000 and ¢1 = 0.5.
6. CONCLUSION

Nonstochastic ridge selection rules are important to ridge
regression methodology because virtually all the theoretical prop-
erties of ridge estimators must be derived under the assumption
that k is nonrandom. In this study three nonstochastic selection
rules for ridge parameters were investigated and compared with one
stochastic version. The nonstochastic ridge estimators were shown
to compete very favorably with the stochastic one when mean squared
error is a criterion, although in some specific model configura-

tions all the ridge estimators are inferior to least squares.

In the course of this investigation several additional obser-
vations were made that have a bearing on the conclusions drawn
herein. First, Vinod's (1976) use of the minimum ISRM (Index of

Stability of Relative Magnitudes) as a criterion for selecting an

AU AR § i F i st = -
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appropriate value of the multicollinearity allowance performed
erratically. On some X matrices studied the minimum ISRM indicated
a multicollinearity allowance that appeared to be much larger than
one would select from other considerations (e.g. latent roots and
vectors of X“X), a tendency that was also observed by Wichern and
Churchill (1976). Also, the calculation of ISRM often indicates
several local minima and it is not clear whether the absolute min-
imum or the first local minimum should be utilized. Our preference
is to identify the number of multicollinearities in X through the
use of latent roots and vectors of X“X, variance inflation factors,
and pairwise correlations among predictor variables and set m in

{2.1) equal to the number of multicollinearities so identified.

A second observation made quring the course of this study is
that modifications of the nonstochastic selection rules may be
desirable depending on the nature of the multicollinearities. For
example, if two or more strong multicollinearities occur in X,
RR(2) can be less effective in reducing mean squared error than
RR(3) or RR(4). This is because |X“X| can be so close to zero that
a large value of k is required to force |X“X + kI| to equal 1.0.
Large values of k do not reduce the variance portion of mse(én) as
substantially as do small ones and may thereby negate the advantage

of using ridge regression.

Finally, modifications of the preliminary test procedure may

be possible. These modifications should be aimed at reducing the




mean squared errors for the ridge estimators at the one or two con-
figurations for which they are inferior to least squares in Table 3
while not causing substantial increases in mean squared error at

the other model configurations.




s
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l. Least Squares and Generalized Ridge Regression Scaled

Mean Squared Errors

Estimators p = 0.04 p=1.0 p = 100 p = 10,000

a. Ql = 0.0

LS 287.63 287.63 287.63 287.63

RR 0.04 0.29 0.40 0.40
b. $,= 0.5

LS 287.63 287.63 287.63 287.63

RR 0.04 0.81 26.38 252.49
ik ¢1 = 1.0

LS 287.63 287.63 287.63 287.63

RR 0.04 1.00 73.42 268.82

19




Mean Squared Errors of Least Squares and

Ridge Regression Estimators

Estimator p = 0.04 p =1.0 p = 100 p = 10,000
a. Ql = 0.0
LS 287.63 287.63 287.63 287.63
RR(1) 24.44 34.93 26.79 208.74
RR(2) 6.51 6.51 7,12 67.50
RR(3) 18.90 18.90 18.90 19.37
RR(4) 19.48 19.48 19.48 19.92
b. ¢1 = 0.5
LS 287.63 287.63 287.63 287.63
RR(1) 23.20 18.66 41.03 367.36
RR(2) 6.52 6.79 34.44 2,799.34
RR(3) 18.91 19.07 36.01 1,730.44
RR(4) 19.48 19.64 36.35 1,707.20
. ¢, =1.0
LS 287.63 287.63 287.63 287.63
RR(1) 29.81 32.29 100.37 801.66
RR(2) 6.55 7.47 103.15 9,670.48
RR(3) 18.93 19.58 87.15 6,843.79
RR(4) 19.50 20.15 86.79 6,750.64




21
3. Mean Squared Errors of Ridge Preliminary Test Estimators:
>
a = 0.05 (Top Line) and a = 0.01 (Bottom Line)
Estimator p =0.04 p=1.0 p = 100 p = 10,000
a. 91 = 0.0
RR(2) 77.79 77.79 78.37 135.72
26.81 26.82 27.41 87.19
RR(3) 87.84 87.84 87.85 88.30
38.55 38.55 38.56 39.02
RR(4) 88.28 88.28 88.28 88.69
39.09 39.09 39.09 39.53
b. ¢ = 0.5
RR(2) 77.80 78.08 107.20 1,330.61
26.82 27.11 56.82 2,090.71
RR(3) 87.85 88.05 108.25 1,042.61
38.56 38.75 58.20 1,502.61
RR(4) 88.29 88.48 108.50 1,035.02
£ 39.10 39.28 58.51 1,488.08 q
(=3 91 = 1.0
RR(2) 77.83 78.83 179.26 420.71
26.85 27.86 131.40 1,101.83
L RR (3) 87.88 88.66 167.77 394.21
{ 38.59 39.34 116.67 922.65
i RR (4) 88.31 89.09 167.47 393.29
‘ 39.12 39.87 116.28 916.50

e o o S 23 s e -~ A .
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